Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.332
1.
Sci Adv ; 10(19): eadk7283, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728392

Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.


Carbonic Anhydrases , Cyanobacteria , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/chemistry , Cyanobacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/enzymology , Allosteric Regulation , Phylogeny , Ribulosephosphates/metabolism , Models, Molecular , Protein Multimerization , Carbon Dioxide/metabolism , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
2.
Physiol Plant ; 176(3): e14329, 2024.
Article En | MEDLINE | ID: mdl-38695156

Although tetraploid wheat has rich genetic variability for cultivar improvement, its physiological mechanisms associated with photosynthetic productivity and resilience under nitrogen (N) deficit stress have not been investigated. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese Spring (CS, hexaploid) as materials and investigated the differences in net photosynthetic rate (Pn), carboxylation capacity, electron transfer capacity, photosynthetic product output, and photosynthetic N allocation under normal N (CK) and low N (LN) through hydroponic experiments. Tetraploid emmer wheat (Kronos) had a stronger photosynthetic capacity than hexaploid wheat (YM25, CS) under low N stress, which mainly associated with the higher degree of PSII opening, electron transfer rate, Rubisco content and activity, ATP/ADP ratio, Rubisco activase (Rca) activity and Rubisco activation state, and more leaves N allocation to the photosynthetic apparatus, especially the proportion of N allocation to carboxylation under low N stress. Moreover, Kronos reduced the feedback inhibition of photosynthesis by sucrose accumulation through higher sucrose phosphate synthetase (SPS) activity and triose phosphate utilization rate (VTPU). Overall, Kronos could allocate more N to the photosynthetic components to improve Rubisco content and activity to maintain photosynthetic capacity under low N stress while enhancing triose phosphate output to reduce feedback inhibition of photosynthesis. This study reveals the physiological mechanisms of emmer wheat that maintain the photosynthetic capacity under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Nitrogen , Photosynthesis , Ribulose-Bisphosphate Carboxylase , Triticum , Photosynthesis/physiology , Triticum/physiology , Triticum/genetics , Triticum/metabolism , Nitrogen/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Stress, Physiological , Plant Leaves/physiology , Plant Leaves/metabolism , Adaptation, Physiological , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics
3.
Methods Mol Biol ; 2790: 355-372, 2024.
Article En | MEDLINE | ID: mdl-38649580

Agronomists, plant breeders, and plant biologists have been promoting the need to develop high-throughput methods to measure plant traits of interest for decades. Measuring these plant traits or phenotypes is often a bottleneck since skilled personnel, resources, and ample time are required. Additionally, plant phenotypic traits from only a select number of breeding lines or varieties can be quantified because the "gold standard" measurement of a desired trait cannot be completed in a timely manner. As such, numerous approaches have been developed and implemented to better understand the biology and production of crops and ecosystems. In this chapter, we explain one of the recent approaches leveraging hyperspectral measurements to estimate different aspects of photosynthesis. Notably, we outline the use of hyperspectral radiometer and imaging to rapidly estimate two of the rate-limiting steps of photosynthesis: the maximum rate of the carboxylation of Rubisco (Vcmax) and the maximum rate of electron transfer or regeneration of RuBP (Jmax).


Photosynthesis , Plant Leaves , Ribulose-Bisphosphate Carboxylase , Plant Leaves/physiology , Plant Leaves/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Hyperspectral Imaging/methods , Crops, Agricultural
4.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593075

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Archaea , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Archaea/metabolism , Photosynthesis , Glycolates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Oxygenases/metabolism , Pentoses
5.
Methods Mol Biol ; 2790: 417-426, 2024.
Article En | MEDLINE | ID: mdl-38649584

Rubisco fixes CO2 through the carboxylation of ribulose 1,5-bisphosphate (RuBP) during photosynthesis, enabling the synthesis of organic compounds. The natural diversity of Rubisco properties represents an opportunity to improve its performance and there is considerable research effort focusing on better understanding the properties and regulation of the enzyme. This chapter describes a method for large-scale purification of Rubisco from leaves. After the extraction of Rubisco from plant leaves, the enzyme is separated from other proteins by fractional precipitation with polyethylene glycol followed by ion-exchange chromatography. This method enables the isolation of Rubisco in large quantities for a wide range of biochemical applications.


Plant Leaves , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/isolation & purification , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism , Plant Leaves/chemistry , Plant Leaves/enzymology , Chromatography, Ion Exchange/methods , Polyethylene Glycols/chemistry
6.
Methods Mol Biol ; 2795: 227-238, 2024.
Article En | MEDLINE | ID: mdl-38594542

In plants, complex signaling networks monitor and respond to environmental cues to determine the optimal time for the transition from the vegetative to reproductive phase. Understanding these networks requires robust tools to examine the levels and subcellular localization of key factors. The florigen FLOWERING LOCUS T (FT) is a crucial regulator of flowering time and occurs in soluble and membrane-bound forms. At low ambient temperatures, the ratio of these forms of FT undergoes a significant shift, which leads to a delay in the onset of flowering. To investigate these changes in FT localization, epitope-tagged FT protein can be isolated from plants by subcellular fractionation and its localization examined by immunoblot analysis of the resulting fractions. However, the highly abundant protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) can interfere with methods to detect and characterize low-abundance proteins such as FT. In this chapter, we present a method for analyzing the ratio of HA-tagged FT (HA:FT) in different subcellular fractions while mitigating the interference from RuBisCO by using protamine sulfate (PS) to deplete RuBisCO during protein purification, thereby enhancing HA:FT detection in fractionated samples.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Florigen/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Signal Transduction , Gene Expression Regulation, Plant , Flowers/metabolism
7.
Food Funct ; 15(9): 5132-5146, 2024 May 07.
Article En | MEDLINE | ID: mdl-38682288

Growing demand for sustainable, plant-based protein sources has stimulated interest in new ingredients for food enrichment. This study investigates the nutritional and digestive implications of enriching wheat dough with RuBisCO, in comparison to pea protein-enriched and gluten-enriched doughs. The protein quality and digestibility of these enriched doughs were analysed through dough characterization, in vitro digestion experiments and biochemical analysis of digesta. Our findings indicate that an enrichment at 10% of RuBisCO or pea proteins improves the chemical score and the in vitro PDCAAS (IV-PDCAAS) score of wheat dough as compared to the control dough. Digestibility assays suggest that RuBisCO introduction modifies the protein hydrolysis kinetics: the nitrogen release is lower during gastric digestion but larger during intestinal digestion than other samples. The analysis of the protein composition of the soluble and insoluble parts of digesta, using size-exclusion chromatography, reveals that the protein network in RuBisCO-enriched dough is more resistant to gastric hydrolysis than the ones of other doughs. Indeed, non-covalently bound peptides and disulfide-bound protein aggregates partly composed of RuBisCO subunits remain insoluble at the end of the gastric phase. The digestion of these protein structures is then mostly performed during the intestinal phase. These results are also discussed in relation to the digestive enzymatic cleavage sites, the presence of potential enzyme inhibitors, the protein aggregation state and the secondary structures of the protein network in each dough type.


Digestion , Glutens , Ribulose-Bisphosphate Carboxylase , Triticum , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/chemistry , Triticum/chemistry , Triticum/metabolism , Glutens/metabolism , Glutens/chemistry , Flour/analysis , Pea Proteins/chemistry , Pea Proteins/metabolism , Pisum sativum/chemistry , Hydrolysis , Humans , Plant Proteins/metabolism , Plant Proteins/chemistry
8.
PLoS Pathog ; 20(3): e1012064, 2024 Mar.
Article En | MEDLINE | ID: mdl-38437247

Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.


Potyvirus , Viral Proteins , Viral Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Potyvirus/metabolism , Plant Diseases
9.
Bioresour Technol ; 398: 130529, 2024 Apr.
Article En | MEDLINE | ID: mdl-38437969

The process of biological fermentation is often accompanied by the release of CO2, resulting in low yield and environmental pollution. Refixing CO2 to the product synthesis pathway is an attractive approach to improve the product yield. Cadaverine is an important diamine used for the synthesis of bio-based polyurethane or polyamide. Here, aiming to increase its final production, a RuBisCO-based shunt consisting of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulate kinase (PRK) was expressed in cadaverine-producing E. coli. This shunt was calculated capable of increasing the maximum theoretical cadaverine yield based on flux model analysis. When a functional RuBisCO-based shunt was established and optimized in E. coli, the cadaverine production and yield of the final engineered strain reached the highest level, which were 84.1 g/L and 0.37 g/g Glucose, respectively. Thus, the design of in situ CO2 fixation provides a green and efficient industrial production process.


Escherichia coli , Ribulose-Bisphosphate Carboxylase , Ribulose-Bisphosphate Carboxylase/metabolism , Cadaverine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Carbon Dioxide/metabolism , Fermentation
10.
Genes Genomics ; 46(4): 423-436, 2024 Apr.
Article En | MEDLINE | ID: mdl-38324226

BACKGROUND: Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE: To understand the biological function of the GhRCAß2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAß2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS: The bioinformatics tools were used to analyze the sequence features of GhRCAß2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAß2 protein. The expression pattern of the GhRCAß2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS: The full-length CDS of GhRCAß2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAß2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAß2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAß2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA ß-isoform. The GhRCAß2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAß2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAß2 in comparison to the wild-type cotton plants. The GhRCAß2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAß2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAß2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAß2 gene. CONCLUSION: Our findings will establish a basis for further understanding the function of the GhRCAß2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.


Arabidopsis , Gossypium , Gossypium/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Isoforms , Arabidopsis/metabolism
11.
Metab Eng ; 82: 171-182, 2024 Mar.
Article En | MEDLINE | ID: mdl-38395194

Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.


Photosynthesis , Synechocystis , Photosynthesis/physiology , Metabolic Networks and Pathways/genetics , Synechocystis/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
12.
Photosynth Res ; 159(1): 69-78, 2024 Jan.
Article En | MEDLINE | ID: mdl-38329704

The combined stress of drought and salinity is prevalent in various regions of the world, affects several physiological and biochemical processes in crops, and causes their yield to decrease. Photosynthesis is one of the main processes that are disturbed by combined stress. Therefore, improving the photosynthetic efficiency of crops is one of the most promising strategies to overcome environmental stresses, making studying the molecular basis of regulation of photosynthesis a necessity. In this study, we sought a potential mechanism that regulated a major component of the combined stress response in the important crop barley (Hordeum vulgare L.), namely the Rubisco activase A (RcaA) gene. Promoter analysis of the RcaA gene led to identifying Jasmonic acid (JA)-responsive elements with a high occurrence. Specifically, a Myelocytomatosis oncogenes 2 (MYC2) transcription factor binding site was highlighted as a plausible functional promoter motif. We conducted a controlled greenhouse experiment with an abiotic stress-susceptible barley genotype and evaluated expression profiling of the RcaA and MYC2 genes, photosynthetic parameters, plant water status, and cell membrane damages under JA, combined drought and salinity stress (CS) and JA + CS treatments. Our results showed that applying JA enhances barley's photosynthetic efficiency and water relations and considerably compensates for the adverse effects of combined stress. Significant association was observed among gene expression profiles and evaluated physiochemical characteristics. The results showed a plausible regulatory route through the JA-dependent MYC2-RcaA module involved in photosynthesis regulation and combined stress tolerance. These findings provide valuable knowledge for further functional studies of the regulation of photosynthesis under abiotic stresses toward the development of multiple-stress-tolerant crops.


Cyclopentanes , Hordeum , Oxylipins , Hordeum/genetics , Hordeum/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Droughts , Photosynthesis/genetics , Salt Stress , Stress, Physiological , Water/metabolism , Salinity
13.
Proc Natl Acad Sci U S A ; 121(10): e2318542121, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38408230

Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.


Carbon Dioxide , Chlorophyta , Carbon Dioxide/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Proteomics , Plastids/metabolism , Photosynthesis/genetics , Chlorophyta/genetics , Chlorophyta/metabolism , Plants/metabolism
14.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38418607

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Cathepsin B/metabolism , Freezing , Ribulose-Bisphosphate Carboxylase/metabolism , Apoptosis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
15.
Plant J ; 118(4): 940-952, 2024 May.
Article En | MEDLINE | ID: mdl-38321620

The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.


Carbon Dioxide , Chloroplasts , Crops, Agricultural , Ribulose-Bisphosphate Carboxylase , Carbon Dioxide/metabolism , Chloroplasts/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Photosynthesis/physiology , Cyanobacteria/metabolism , Cyanobacteria/physiology , Cyanobacteria/genetics , Plants, Genetically Modified
16.
Biochem Biophys Res Commun ; 701: 149609, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38316092

Rubisco catalysis a rate-limiting step in photosynthesis. It is a complex of eight large (RbcL) and eight small (RbcS) subunits. The biogenesis of Rubisco requires assembly chaperones. One of the key Rubisco assembly chaperones, Rubisco accumulation factor1 (RAF1), assembled as a dimer, acts downstream of chaperonin-assisted RbcL folding by stabilizing RbcL antiparallel dimers for assembly into RbcL8 complexes. In maize, lacking RAF1 causes Rubisco deficient and seedling lethal. A RAF1 homologue, RAF1-like (RAFL), has been detected in Arabidopsis. We found RAFL shares 61.98 % sequence similarity with RAF1. They have similar conserved domains, predicted 3D structures and gene expression pattern. Phylogenetic tree analysis showed that RAFL and RAF1 only present in analyzed dicots, while only one copy of RAF presented in monocots, mosses and green algae. Combined analysis by three different protein-protein interaction methods showed that RAFL interacts with RAF1 both in vivo and in vitro. Taken together, we conclude that RAFL and RAF1 are close paralogous genes, and they can form heterodimer and/or homodimers to mediate Rubisco assembly in Arabidopsis.


Arabidopsis Proteins , Arabidopsis , Ribulose-Bisphosphate Carboxylase , Arabidopsis/genetics , Arabidopsis/metabolism , Molecular Chaperones/metabolism , Photosynthesis , Phylogeny , Ribulose-Bisphosphate Carboxylase/metabolism , Arabidopsis Proteins/metabolism
17.
Plant Signal Behav ; 19(1): 2318514, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38375792

Chilling stress is an important environmental factor that affects rice (Oryza sativa L.) growth and yield, and the booting stage is the most sensitive stage of rice to chilling stress. In this study, we focused on OsRBCS3, a rice gene related to chilling tolerance at the booting stage, which encodes the key enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit in photosynthesis. The aim of this study was to elucidate the role and mechanism of OsRBCS3 in rice chilling tolerance at the booting stage. The expression levels of OsRBCS3 under chilling stress were compared in two japonica rice cultivars with different chilling tolerances: Kongyu131 (KY131) and Longjing11 (LJ11). A positive correlation was found between OsRBCS3 expression and chilling tolerance. Over-expression (OE) and knock-out (KO) lines of OsRBCS3 were constructed using over-expression and CRISPR/Cas9 technology, respectively, and their chilling tolerance was evaluated at the seedling and booting stages. The results showed that OE lines exhibited higher chilling tolerance than wild-type (WT) lines at both seedling and booting stages, while KO lines showed lower chilling tolerance than WT lines. Furthermore, the antioxidant enzyme activities, malondialdehyde (MDA) content and Rubisco activity of four rice lines under chilling stress were measured, and it was found that OE lines had stronger antioxidant and photosynthetic capacities, while KO lines had the opposite effects. This study validated that OsRBCS3 plays an important role in rice chilling tolerance at the booting stage, providing new molecular tools and a theoretical basis for rice chilling tolerance breeding.


Antioxidants , Oryza , Antioxidants/metabolism , Oryza/metabolism , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Seedlings/metabolism , Photosynthesis/genetics , Cold Temperature
18.
Plant Cell Environ ; 47(5): 1701-1715, 2024 May.
Article En | MEDLINE | ID: mdl-38294051

Leaf gas exchange measurements are an important tool for inferring a plant's photosynthetic biochemistry. In most cases, the responses of photosynthetic CO2 assimilation to variable intercellular CO2 concentrations (A/Ci response curves) are used to model the maximum (potential) rate of carboxylation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, Vcmax) and the rate of photosynthetic electron transport at a given incident photosynthetically active radiation flux density (PAR; JPAR). The standard Farquhar-von Caemmerer-Berry model is often used with default parameters of Rubisco kinetic values and mesophyll conductance to CO2 (gm) derived from tobacco that may be inapplicable across species. To study the significance of using such parameters for other species, here we measured the temperature responses of key in vitro Rubisco catalytic properties and gm in cotton (Gossypium hirsutum cv. Sicot 71) and derived Vcmax and J2000 (JPAR at 2000 µmol m-2 s-1 PAR) from cotton A/Ci curves incrementally measured at 15°C-40°C using cotton and other species-specific sets of input parameters with our new automated fitting R package 'OptiFitACi'. Notably, parameterisation by a set of tobacco parameters produced unrealistic J2000:Vcmax ratio of <1 at 25°C, two- to three-fold higher estimates of Vcmax above 15°C, up to 2.3-fold higher estimates of J2000 and more variable estimates of Vcmax and J2000, for our cotton data compared to model parameterisation with cotton-derived values. We determined that errors arise when using a gm,25 of 2.3 mol m-2 s-1 MPa-1 or less and Rubisco CO2-affinities in 21% O2 (KC 21%O2) at 25°C outside the range of 46-63 Pa to model A/Ci responses in cotton. We show how the A/Ci modelling capabilities of 'OptiFitACi' serves as a robust, user-friendly, and flexible extension of 'plantecophys' by providing simplified temperature-sensitivity and species-specificity parameterisation capabilities to reduce variability when modelling Vcmax and J2000.


Gossypium , Ribulose-Bisphosphate Carboxylase , Gossypium/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide , Temperature , Photosynthesis/physiology , Plant Leaves/metabolism
19.
New Phytol ; 241(6): 2353-2365, 2024 Mar.
Article En | MEDLINE | ID: mdl-38197185

The kinetic properties of Rubisco, the most important carbon-fixing enzyme, have been assessed in a small fraction of the estimated existing biodiversity of photosynthetic organisms. Until recently, one of the most significant gaps of knowledge in Rubisco kinetics was marine macrophytes, an ecologically relevant group including brown (Ochrophyta), red (Rhodophyta) and green (Chlorophyta) macroalgae and seagrasses (Streptophyta). These organisms express various Rubisco types and predominantly possess CO2 -concentrating mechanisms (CCMs), which facilitate the use of bicarbonate for photosynthesis. Since bicarbonate is the most abundant form of dissolved inorganic carbon in seawater, CCMs allow marine macrophytes to overcome the slow gas diffusion and low CO2 availability in this environment. The present review aims to compile and integrate recent findings on the biochemical diversity of Rubisco and CCMs in the main groups of marine macrophytes. The Rubisco kinetic data provided demonstrate a more relaxed relationship among catalytic parameters than previously reported, uncovering a variability in Rubisco catalysis that has been hidden by a bias in the literature towards terrestrial vascular plants. The compiled data indicate the existence of convergent evolution between Rubisco and biophysical CCMs across the polyphyletic groups of marine macrophytes and suggest a potential role for oxygen in shaping such relationship.


Carbon Dioxide , Diatoms , Ribulose-Bisphosphate Carboxylase/metabolism , Bicarbonates , Diatoms/metabolism , Photosynthesis , Carbon
20.
Sci Total Environ ; 917: 170460, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38286284

The occurrence of sulfamethoxazole (SMX) is characterized by low concentration and pseudo-persistence. However, the toxic effects and mechanisms of SMX, especially for low concentration and long-term exposure, are still not clear. This study investigated the effects and mechanisms of SMX on carbon fixation-related biological processes of Chlorella pyrenoidosa at population, physiological-biochemical, and transcriptional levels. Results showed that 1-1000 µg/L SMX significantly inhibited the dry weight and carbon fixation rate of C. pyrenoidosa during 21 d. The upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, as well as the accumulation of malondialdehyde (MDA) demonstrated that SMX posed oxidative damage to C. pyrenoidosa. SMX inhibited the activity of carbonic anhydrase (CA), and consequently stimulated the activity of Rubisco. Principal component analysis (PCA) revealed that SMX concentration was positively correlated with Rubisco and CAT while exposure time was negatively correlated with CA. Transcriptional analysis showed that the synthesis of chlorophyll-a was stabilized by regulating the diversion of protoporphyrin IX and the chlorophyll cycle. Meanwhile, multiple CO2 compensation mechanisms, including photorespiratory, C4-like CO2 compensation and purine metabolism pathways were triggered in response to the CO2 requirements of Rubisco. This study provides a scientific basis for the comprehensive assessment of the ecological risk of SMX.


Chlorella , Microalgae , Sulfamethoxazole/metabolism , Carbon Dioxide/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Chlorophyll/metabolism , Antioxidants/metabolism
...